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Surface waves due to blasts on and above liquids 

By A. R. SEN 
Department of Mathematics, Jadavpur University, Calcutta 

(Received 30 April 1962 and in revised form 4 October 1962) 

The problem of surface waves due to the interaction of a blast-generated shock 
wave with an ideal incompressible heavy (or light) fluid of infinite depth has 
been investigated in both two and three dimensions. The wave integrals have been 
evaluated exactly for arbitrary as well as special pressure distributions on the 
fluid surface. Asymptotic values of the surface wave elevation have been obtained 
for large values of time at  a large distance from the seat of the applied pressure. 
Certain peculiarities of the motion are discussed. 

1. Introduction 
The problem of surface waves caused by the interaction of a blast-generated 

shock wave with an ideal incompressible fluid has been investigated by Rumiant- 
sev (1960) and Kisler (1960). Inview of the large difference between the densities 
of the gas and the fluid, it  is assumed that the fluid displacements are too small 
to affect the motion of the gas, which is supposed known. This leads us to a 
problem of infinitesimal wave motion due to a known unsteady pressure distribu- 
tion over a time-varying area on the free surface of the fluid. 

The work of Rumiantsev is concerned with finding a number of similarity 
solutions of the above problem for a weightless fluid of infinite depth in both two 
and three dimensions. Kisler, on the other hand, formulates the general three- 
dimensional gravity wave problem for shallow liquids, and then discusses the 
deep-water waves due to a special pressure distribution. The wave integral in the 
last case is made to depend on some other integrals which remain unevaluated in 
exact terms. Finally, the surface displacement of a weightless fluid is derived 
in this particular case. 

In  this paper, we first formulate the problem stated before for the case of a deep 
heavy liquid in two dimensions, and evaluate the resulting wave integral for 
arbitrary as well as special pressure distributions. An asymptotic expression 
for the wave elevation is given for large values of time a t  a large distance from 
the pressure zone. For a weightless fluid, a solution of the problem more general 
than Rumiantsev’s is proposed. This two-dimensional problem has not been 
examined by the previous investigators, In the three-dimensional case, the deep- 
water gravity wave problem is discussed by a method different from Kisler’s. 
The wave integral is analysed for arbitrary pressure distributions, and its exact 
evaluation, hitherto unknown, is given together with integrals suitable for 
numerical calculation. The general solution is illustrated for plausible laws of 
pressure variations, and incidentally, the exact solution of Kisler’s special prob- 
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lem is also given. An asymptotic expression similar to the one in the two-dimen- 
sional case is obtained for the wave elevation. Finally, we derive similar expres- 
sions for a weightless fluid and discuss some points of interest. 

2. The two-dimensional problem 
We consider a semi-infinite ocean of a heavy homogeneous ideal liquid which 

is initially a t  rest. Its undisturbed horizontal free surface forms the (x, y)-plane, 
while the x-axis is taken vertically upwards. 

Let us suppose that surface waves are excited in the ocean by a cylindrical 
pressure region propagating outwards from 0, such as would be caused by a 
strong cylindrical blast on the liquid surface. The pressure function po(x,  t )  
is taken, for t > 0, as 

Here the function f (x, t )  is assumed to possess a Fourier transform in x. As the 
motion starts from rest, there exists a velocity potential $(x, z ;  t )  which satisfies 
the equation 

On the assumption of small oscillations in which squares of the velocities are 
negligible, the pressure equation gives 

v2q5 = 0 (2 < 0, t > 0). (2) 

P/P = a$lat -gz, 

where p denotes the pressure at  (x, z )  a t  time t, p the density of the liquid, and 
g the acceleration due to gravity. If c(x, t )  denotes the surface elevation above 
the undisturbed surface, then we get 

g d  = t ,  +p(a$/at)s=O* (3) 

ac/at = -(a+/aZ),=, ( t  > 0). (4) 

The kinematical surface condition gives 

Eliminating 5 between (3) and (4), we get 

a$ l a p  +g- = -2 ( z  = 0,t > 0). 
at2 aZ at 

The condition at infinity is 

$ + O  for z +  -m (t > 0). (6) 

The initial conditions are 

$(x, 0; 0 )  = $ t ( X ,  0 ;  0 )  = 0. (7) 

The problem is to find a solution $(x, z ;  t )  of (2) which satisfies the equations ( 5 )  
and (7)  together with the condition (6). The surface elevation 5 is then found by 
(3). 
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Solution 

Assuming a Fourier transform for the velocity potential function $(x ,  z ;  t ) ,  
namely 

$(k, 2; t )  = ___ $(x ,  2; t )  eikxdx, (8) 
li(2n) jm -m 

- 

we obtain from ( 2 )  the equation 

a2$1a22-k2g = 0. 

$ = A ( k ,  t )  elklz. 

The solution of this equation which satisfies (6) is 

(9) 

The transformation of ( 5 )  with the help of (9) gives the equation for A, 

The real solution of this equation is 

where a 2  = glkl. (10) 

parts, 1 X d S )  

The initial conditions (7) give A, = 0. Consequently we get, after an integration by 

cos v(t - s )  cis j f ( x ,  s> eikxdx. (11) 
--So(s) 

Inverting (8) by the Fourier inversion theorem, using (9) and (1  l), we find that 
the velocity potential is 

Equation (3) now gives 

Evaluation of the wave integral 
Assuming that the interchange of the orders of k- and s-integrations in (13) is 
permissible, we have from (13) that 

m S"(S) 

-ngp< = ds  lim a sin a(t - s )  ekz cos k ( x  - a) f (a ,  s )  da. 1: 0-0- lo dkj-So(.q) 
For values of x outside the domain of applied pressure, it is generally permissible 
to interchange the orders of the k- and a-integrals. This consideration leads to 

- ngp6 = /)s/::::s,f(a, s )  da lim sin a( t  - s) cos k ( x  - a)  ekzdk. (14) 
z+o - 

5-2 
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Expanding sin c ( t  - s) in powers of c(t - s )  and integrating the series term by term, 
which is permissible, we obtain the value of the k-integral of (14) as 

m 

3 ( -1 )n  -~ - ekz kn+l cos k(x - a )  dE 
n= 0 (%+ l)! 

The last series in (15) can be summed in terms of tabulated functions. For, 
on simplifying the factorials in it by the inultiplication theorem for Gamma func- 
tions, we find this series to be equal to 

where 

and 

(Erdklyi 1953, 4.3(5), 6.9.3(20, 30)). Here pFq denotes a generalized hypergeo- 
metric series, and C(x)  and B(x) are Fresnel's integrals defined by 

[ ~ ( x ) ,  ~ ( x ) ]  = (2n)-hr[cos t ,  sin t ]  t -h  c ~ f .  
0 

Thus, = {q(t - s) /2(x  - [j.r&-h{cos &wC(gw)  + sin goX(&w)} 

- n+w*{sin &wC(gw) - cos gwS(&w)) + 11. (16) 
We have now by (14) 

where x is defined either by the series (15) or by its closed-form expression (16). 
It should be noticed that the function x does not depend on the actual form of 
f(a, s) and that i t  can be conveniently calculated by using (15) or (16). 

Xpecial pressure distributions 

Specific hypotheses about the pressure function f(x, t )  are needed to complete 
the integrations on the right-hand side of (17) .  

(i) Let 
f(x,t) = f & )  / X I r n  (,PTL > - 11, 

where f rn( t )  is a known function oft. We insert the series for x in (1 7) ,  and integrate 
this series with respect to a term by term, which is permissible for 1x1 > x,(t). 
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A well-known result on Mellin transforms (Erdhlyi 1954, 6.2(20)) now leads to 
the expression 

rt m 

+2F!  2n+2,1+m;2+m;-- -  , 1x1 >xo( t ) .  ( 1 9 )  ( xo's)')l X 

From this, one may construct more general solutions by superposition, especially 
when the pressure function is prescribed in the form 

m 

m = O  
f h t )  = c fm(t)  Ixlm. 

(ii) In the particular case 

(20) 
f ( z , t )  = DlslmtP (m > - l , p + m + 2  > 0); 

zo( t )  = vt, 

where D and v are constants, we find from (19), by using a known integral 
(ErdBlyi 1954,6.2), 

(2n+ l ) !  F ( p + m + 2 )  
r( 4n + p + m + 4 )  

m 

~ p (  1 + m) 6 = Dtp+'(vt)l+%-2 2 ( - 1)n ( g t 2 / X ) 2 n  ~ .~ __ 
n=O 

x [,F2(2n + 2,1+ m,p + m + 2;  2 + m, 4n + p  + m + 4;  v t /x)  
+ a 3F2 function obtained by replacing vtlx: by - vtjx] (1x1 > vt). 

(21) 
Approximations 

(i) Series approximation. For small values of gt2/(x  - vtl or gt2/x, the function x 
in (17)  may be replaced by the first two terms of its series representation (15), 
the result giving an approximate expression for 6. I n  the particular problems (18) 
and (20), the first two terms of the n-series of (19) and (21) give the required 
approximate values of 6. For instance, when 

f ( x , t )  = D, x,(t) = ~ t ,  

equation (2  1 )  gives approximately 

7rpc = D x r 2 [ 2 x r  + ( 1 - x') h i  ( 1  - x r )  - (1 + x ' )  In ( 1  + x') 
-+Gg2x2v-4{20x' + y ~ 3 - ~ ' 5 +  i o ( i  -X731n ( 1  

- io ( i  +x ' )31n(1  +x'))l, (22)  

where xr = wt/x and lx'l < 1. (23) 

(ii) Asymptotic representation of the surface displacement. Let us take 

f ( x ,  t )  = D(t  + tl)pn (a > 0, xo(t) = vt), (24) 
where D and v are constants. As this pressure distribution is symmetrical about 
the origin, it would be sufficient to consider values of 6 on the positive side of the 
x-axis only. By (13) ,  we have 

7rD-lg4pC = fbmk-& cos kx dkIOt- 2 sin a ( t  - s )  sin (kws) (tl + (25) 
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Let us introduce the functions 

The value of the s-integral of (25) may now be written as 

Acl-n(k, V ,  tl) cos P(k,  v) + AsIpn(k, v, t,) sin P(k, v) 

AcI-,(k, - V ,  tl) = IU - Ev1n-l [C{(t + t,) I U  - kvl, 1 - n} - C{t,Icr - kvl, 1 - n}], 

P(k,  v) = g(t + t,) + Evt,. 

The resulting k-integral of (25) is next evaluated asymptotically by the applica- 
tion of the method of stationary phase under the conditions 

x 9 vt > Wt,, g(t+t1)2/4x p 1, (27) 

it being supposed that the ratio t,/t is not too small. The first of these conditions 
signifies that we are calculating 6 at a large distance from the source while the 
second follows from Lamb’s condition (Lamb 1932, $241) for the applicability 
of the stationary phase formula. In  the actual calculations, the products 
cos kx cos P(k,  If: v) and cos Icx sin P(k,  & v) are expressed as sums of cosines and 
sines, and only those phase terms are retained which have a stationary point in 
0 < k < W. The other phase terms are neglected because their contributions to the 
integral, as is well known, are of the second order on the scale of (27). We have then 

n*D-b&pPS - (x-tQ-4 [Acl-n(ko.v,tl)cos (T:-$rr) +Asl-n(kO,i?,tl)sin (T:--&)] 

- an expression obtained by replacing v by - v, where 

&(v) = g(t + t J 2 / 4 ( x  - ~ t , ) ~ ,  T: = g(t + t1 )2 /4 (~  - ~ t , ) ,  

We observe that 

Ael-n(kO, V ,  t l )  = [ a g ( t  + t l )  ( 2 ~  + 2 ~ t  - ~ t , )  (X - ~ t , ) - ~ ] ~ - ~  

x [C{gg(t + t ,)2 (2x + wt - vt,) (x - ~ t , ) - ~ ,  1 - n> 

- C{$gt,(t + t,) (22 + vt - wt,) (x- ~ t , ) - ~ ,  1 - n}]. 

The functions C(x,  a) and S(x ,  a) are actually equal to Bohmer’s integrals or are 
proportional to the sine and the cosine integrals (a  = 0) (ErdBlyi 1953, 9.8 and 
9.10). By using their Taylor expansions about a point x = x1 > 0, their asymp- 
totic expansions for x B 1 and the order relations (27), we ultimately obtain the 
following asymptotic expression for 6 

< - - 4Dp-ln-4g-%d(t + t,)-n-l sin [gvt(t + t1)2/4~2] cos[g(t + tl)”4z + in.]. (38)  

For t, = 0.5 sec, g = 9.8m/sec2, v = 0*05m/sec, x = 10m, n = 1, the variation of 
5 with t is illustrated in figure 1. 
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(iii) Case of a uieightZessJluid. In  the immediate area of the blast, the pressure 
effects predominate over gravity while outside this region gravity effects are 
more important. This aspect of the motion leads us to study the case of an in- 
compressible weightless fluid both inside the expanding pressure zone and in the 
immediate neighbourhood outside it. Letting g = 0 in (12) and (13), we get 

FIGURE 1 

In general, these expressions may be reduced to 

4 = -.(np)-’ + (x - f (a, s)  da ,  

npc= Jot ( t - s ) d s  J:;;(;)(x- a)-2f(a, 8) da (1x1 ’ xo(t)). (32) 

For certain special pressure distributions, we obtain the following results. 

(a)  Let f ( s , t )  = D(t+t,)-l, a,(t) = vt (0, v = const.). (33) 

By (30) we have 

cos kx[(t  + t,) {(si kvt, - si kv(t + t l ) )  cos kvt, 

- (ci kvt, - ci kv(t + t l ) )  sinkvt,) + (kv)-l(1- cos kvt)] dk  

where si(z) and ci(z) denote the sine and the cosine integrals respectively. Using 
certain well-known results (Ryshik & Gradstein 1957, 4.334), we get 
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( 3 4 b )  

Observing that lim exists finitely for all time, we conclude that 6 has only an 

ordinary discontinuity a t  the boundary of the advancing pressure region. The 
function (6)zc=ivt, has also an ordinary discontinuity at t = t,. 

x+ f V t  

(b)  With f ( x ,  t) = (K/t) G ( 8 ,  

where [ = x/xO(t), 7 = x/xo( t ) ,  xo(t) = ctk, and K ,  c = const., the expression (31) 
leads to Rumiantsev's ( 1960) similarity solution of the corresponding problem. 

( c )  A more general solution of the type in ( b )  is easily constructed. Let us 
introduce the dimensionless variables 

5 = x/xo(t), 7 = z/xo(t), (35) 

(36) 

and assume a pressure function of the form 

f (X7  t )  = @ m / x o ( t ) )  h'G(xlxo(t)), 

K U t ( Z ' )  (2' = &-+i?]), 

where K is a constant of the dimensions of a velocity potential. Let 

be the complex velocity potential. Then (31) gives 

This solution is similar in form to that obtained by Rumiantsev for xo(t) = ct:. 
In  particular, if 

we get 

On the hypothesis (36), we have 

Together with (38), this gives 

(<),=o = (;rrPX2(" + 1)j-I ( t  - s )  %;(a) ds sk 
x [ ,~ , (2 ,n+l ;n+2;x , ( s ) / z )+ ,~~(3 ,n+ l ; n + 2 ;  -xO(s)/x)I (1x1 > xo(t))- 

(41) 

This value of the vertical displacement reduces to that obtained by Rumiantsev 
for the case x,(t) = ct* and n = 0, c being a constant. 
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3. The three-dimensional problem 
Let us suppose that surface waves are generatedlwhen the spherical shock wave 

due to a point blast in the gas interacts with the fluid surface. This gives rise to 
an expanding circular region of pressure on the free surface. With the cylindrical 
co-ordinates ( r ,  8, z )  now replacing the Cartesian co-ordinates (2, y, z ) ,  the equa- 
tion (1) to (3), (5) and (7) change into the following: 

( r  < rO(t),i (42) 
for t > 0, po(r, t )  = f ( r ,  t )  

= o  ( r  > r,(t)) 

V2q5(r, z ;  t )  = 0 ( z  < 0, t > 0) ;  

(here the function f(r,t)is assumed to possessaHanke1 transform withrespect to r )  ; 

(43) 

(14) SP5 = -P&, t )  + P(a4 /w ,= , ;  

while the conditions a t  infinity are the same as before. 

Solution 
We assume a solution of (43) of the form 

Substituting this in (45), we obtain by applying the Hankel inversion theorem 
the following differential equation for A : 

~ + g k d  = - - at(., t )  JO(ka) da. 
p a  a rt’ 0 

a2A 

at2 

The real solution of this equation is 

A = A,(k)cos(at+e,)+- (48) 

where a2 = gk.  (49) 

Using (46), we get A, = 0. Equat,ion (48) now gives, after an integration by parts, 

rob)  
a ( t  - s )  d8J1 af(cL, s )  JO(ka) da. 

r$ = p-lJrnkeksJo(kr)d& 0 af(a,s) J,(ka)da. (50) 

The velocity potential is therefore 

The surface elevation is now found to be 

on application of the Hankel inversion theorem. 
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Evaluation of the wave integral 

We assume that the orders of k- and s-integrals in (51) can be interchanged. For 
values of r outside the region of applied pressure, it  is generally permissible 
to invert the orders of k- and a-integrals. 

Equation (51) now takes the form 

gpc = - /)s/oo(s)af(a, s) da lim /:akeka sin a( t  - s) Jo(kr) J, (ka)  dk. 
z+O- 

By Neumann's addition theorem for Bessel functions, we have 

mJo(kr) J,(ka) = J,(kh) do, 
J O -  

where h = (r2+a2-3racose)k (52) 

We have now 

W P c  = - />sJoTo(siaf(a, s) d a  d6 lim akekzJ,(kh) sin a(t -8) dk.  (53) 
/on ;+o-/om 

in which a permissible change of order of k- and @integrals has been effected. 
Expanding sin a( t  - s) in powers of a( t  - s) and integrating the series with respect 
to k term by term (which is justifiable), we get 

m gn+l(t - s)2n+l  lorn  
the k-integral of (53) = C ( - 1)" ____- kn+2ek~Jo(kh) dk. 

n= 0 (2n+ l ) !  

By using Callandreau's integral representation (Whittaker & Watson 1952, 
p. 364) for Legendre polynomials Pn(cos O), we obtain 

Therefore 
g(t-8) OD g ( t  - s)2 2 n  {(Bn+2)!}2 

( -  I)"+' (h) (4% + l ) !  {(TZ + 1)!)2. lim (the I%-integral of (53)) = ~ 

z-to - 4h3 nYo 
(54) 

After expressing the factorials in the above series in terms of simple similar factors 
by the multiplication theorem for Gamma functions, we apply to the result 
Schlafli and Schonholzer's series formula (Whittaker & Watson, 1952, p. 380) for 
products of Bessel functions. The right-hand side of (54) is then equal to 

- ( ~ / s J 2 ) g ( t - s ) h - 3 [ ( 1 -  ~w~)J~J_;+~w~,(J_%J_~-J~J,)-~w;'J~J_~], (55) 

where +wZ, = g ( t  - s)2/8h (56) 

is the common argument of all the Bessel functions written in (55). Writing 

A ,  = g ( t  - ~ ) ~ / 8 ( r  + a) ,  KZ, = .ira(r + a)-z, A = A(O, KZ,) = ( 1  - KZ, cos2 O)$, (57) 
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we have finally 

a(r+a)-3f(a,s)da 

x [(I - 8A;A-') J,J-,+6A,A-1(J-gJ_,-J~J~)-8A;A-2JgJ-a] 

(r > ro(t)), (58) 

where AIA-l is the common argument of all the Bessel functions written above. 
It may be shown that this result reduces to the expression obtained for 5 by 
Kisler (1960, equation (3.11)) for the particular case 

W 

f ( r ,  t )  = rZnA,(t). 
n=O 

The &integral may be conveniently evaluated by numerical integration as a 
function of the parameters A ,  and K:; this function does not depend on the actual 
law of pressure variations. 

Development of c in an in$nite series 

By (53)  and (54), we have 

in which the n-series is integrated term by term with respect to 0, which is clearly 
permissible for the range of values of r stated. Evaluating the @integral by means 
of a known result of the theory of the Gauss hypergeometric series 2Fl(a, p; y ;  z )  
(ErdBlyi 1953, 2.4(9)), we get 

on simplifying the factorials by the multiplication theorem for Gamma functions. 
The absolute convergence of the last series for all values of qr-l(t - s ) ~ ,  r > ro(t )  
is easily established. For the relations (Erddyi 1953, 2.8 (35, 38, 41)) between 
contiguous hypergeometric series give 

P (a+ 1,  u + 1 ;  1 ;  z )  u + z ( 3 a -  2 )  22(a- 1 ) 2  2Pl(u, a ;  2 ;  z )  2 1  ~~~~~ - -. ~ ~ + ____ ~ - 
z-Zl;(a, a ;  1;  z )  a ( l - z ) 2  n( l - z )Z  2Fl(a,a; 1 ; ~ ) '  

and the desired result follows by a ratio test. It is also clear that the series in 
question can be integrated with respect to a term by term for 0 6 a < ro. We 
have thus 
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This result constitutes the exact series solution of the general problem, the 
functions f (a ,  s )  and ro(s) being known from the solution of the corresponding gas- 
dynamical problem. 

Particular cases 

(i) Let f ( r ,  t )  = h,(t)rm (m > - f ) .  (60) 

By a well-known result on Mellin transforms (Erdklyi 1954,6.2) we have 

where B denotes the Beta function and 
Therefore 

the generalized hypergeometric series. 

P t  

6 = (2/np)r-3B(l,&m+ 1 )  ( t - ~ ) h , ( s ) ( r , ( s ) } ~ + ~ d s  J 0" 

( r  > ro(t)). ( 6 1 )  
For m = 0, the 3F2 series of ( 6 1 )  reduces to a 2Fl series. 

(ii) The wave elevation due to a more general pressure distribution of the type 

is now easily constructed by the method of superposition. In particular, when 
only even powers of r are present in the series of (62), the result of superposition is 
the exact solution of Kisler's problem. 

(iii) Let 
f ( r ,  t )  = DrmtP 

ro(t)  = (U)$  

(m > -#, p + Brn + 2 

(li = const.). 

Then, from (61), 

x $' n + # ,  n+$, +?n+1,p+&n+2; 1 , & r r ~ , t 2 , 4 n + p + + m + 4 ; ~  7 
( r  > (Id)&). (64) 

3(  

Approximat ions 

(i) Asymptotic representation of the wave elevation. Let us take 

f ( r ,  t )  = D(t + f l ) - n  (n  1; ro( t )  = vt), ( 6 5 )  

where D and v are constants. By (51), we have 
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Replacing the Bessel functions by the corresponding finite integrals, and per- 
forming certain justifiable changes of the orders of integration, we get 

x [“( - 2) s(t,  + s ) - ~  sin cr(t - s) sin (kvs sin 0) ds. (66) 
J O  

The exact value of the s-integral of (66) is 

[Ac2.,l(k* 1 ’ 7  t i )  -tlAcl-,l(li, 2’, t1)l WE Q(k,a’) 

+ [A,2 ?,(li, v, t,) - t lA , , - , l (k .  v .  tl)l sin Q ( k ,  v) 

- [Ac2 , l (k.  - ~ ~ , t ~ ) - t l A , ~ - ~ ~ ( k .  - ~ ‘ , t , ) j ~ ~ s Q ( k ,  - v )  
-sgn (cr-lcvsin8) [AS2-?&(k, - ~ , t , ) - t ~ A ~ , - ~ ~ ( k ,  -v,t,)]sil~&(k, - u ) ,  

where 

A,(k, - v, t,) = Icr - kv sin el-“ {C[(t + t,)l CT - kv sin 81, a] - C[t,In - Ev sin 81, a]},  

the C and S functions used here are defined as in (26). It may be noted that the 
difference of the C functions in A,& reduces to a difference of sines when a = 1. 

The resulting k-integral of (66) is next evaluated asymptotically by the applica- 
tion of the method of stationary phase under the conditions 

Q ( k ,  v) = cr(t + t l )  + kvt, sin 8; 

r 9 z i t  > vt,, g ( t + t J 2 / 4 r  + 1, (67)  

i t  being supposed that the ratio t,/t is not too small. I n  the actual calculations, 
the products cos (kr  sin $) cos Q ( k ,  21) are expressed 
as sums of sines and cosines and only those phase terms are retained which have 
a stationary point k = E ,  in 0 < k < CQ for values of q5 greater than sin-l(vt, sin O/r ) .  
It is easily shown that such a stationary point for other values of $ would make 
the resulting $-integral contribute a second-order term to <. After evaluating 
the li-integral of (66) by the stationary-phase formula, we determine the asymp- 
totic value of the $-integral so derived by the same method. We get 

v) and cos (kr sin 9) sin &(k ,  

- an expression obtained by replacing 21 by - v, (68 1 

where 

We note that 

k,, = g(t +tJ2/4(r  - vt, sin 8)2, L(v, 0) = g(t  + tl)”4(r - vt, sin 0). 

Ac2-,(kO, v> tl) = 4(r - z~t, sin 0t2 
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The integrand on the right-hand side of (68) is simplified by using the asymptotic 
expansions of the functions C(x, a )  and S(x, a )  for large values of x, their Taylor 
expansions about a point x = x, > 0 and the order relations (67). Equation (68) 
then transforms into 

-D-lgpC = 29wtr-l(t + tl)-"Jl[g(t + t ,)2 vt/4r2]  cos [g(t + tJ2/4r].  (69) 
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For t, = 0*5sec, w = 0*05m/sec, the variation of 5 with t at a distance r = 10m 
is illustrated in figure 2 and the variation of < with r for t = 9-5 see is illustrated 
in figure 3. 

(ii) Case of a weightless Jluid. As in the two-dimensional case, the pressure 
effects are more marked than the gravity influence in the immediate area of 
the blast. We therefore proceed to investigate the motion of a weightless fluid 
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both inside the expanding pressure area and in its outer neighbourhood. Letting 
g = 0 in (50)  and (51) ,  we get 

af(a,s)JO(ka)da. (71)  

Thevalue of a#/at given by (70)  agrees withthat obtained, in other ways, by Rumi- 
antsev (1960, equation (2.2)). We have from (59)  

A quadratic transformation of the hypergeometric series of (72)  leads to the result 

(73)  

where K2, is defined by (57) ,  and E(K,) is the complete elliptic integral of the 
second kind. 

Particular cases 

(74)  1 ( I )  Let f ( r , t )  = DrmtP (m > -$, m + p + 3  > 0) ,  

ro(t) = vt. 
Then, from (61) ,  

(i&=o = {B(l,+m+ 1)/4pr3}Dt~+2(vt)m+2[B(1, &p++m+#)  

x 4F!($, #, Qm + 1,4p  + $m + #; 1,  Qm + 2 , 1 2 p  + &rn + 2; w2t2/r2) 

-B(1, &p + Qm+ 2) 43!3(Q, $, $m + 1, $ p  + Qm + 2; 1,Qm + 2,Qp + &m+ 3; w2t2/r2)], 

(r > vt). (75)  

For p = 0,  the second of the two *F3 functions of (75)  becomes a3F2 function. 
For m = 0, p = 0 the first of the 4F3 functions of (75)  reduces to a 3F2 function 
while the second becomes a 2F1 function. 

(2) Let f ( r ,  t )  = D, ro(t) = (vt)&, (D, v) = const. (76)  

This hypothesis for the pressure distribution may be supposed as approximately 
correct everywhere except in the vicinity of the shock wave. Equation (7 1 )  gives 

= 4tgv-4 jomk-1J0(kr) ~,(kw+t*) dk. 

The k-integral on the right-hand side above is a discontinuous integral of the 
Weber-Schafheitlin type. Evaluating it, we finally obtain 

(77)  I pD-l(C)g=o = -$v-+tg2Fl($, - 4; 1; r2/wt) (r2 < wt) 

(r2 > vt). = (wt3/13r3) 2Fl($, 4; 4; vt/r2) 
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It may be shown by using the Gauss value for 2Fl(a,/3; y ;  1) that the limit 
lim (Qgz0 exists finitely. The surface displacement has thus always an ordinary 

discontinuity at the boundary r = (vt)& of the pressure region. 
P ' j U t  

4. Discussion of the motion 
Let us consider the wave elevation as given by (69) for large values of time a t  

a large distance from the pressure distribution (65). As the cosine factor in (69) 
changes its sign rapidly, its argument may be interpreted as the phase, and its 
co-factor as the amplitude. We note that the phase is not directly affected by 
the velocity parameter a. For t $ t,, the amplitude varies as - vt1-"r-1J,(gat3/.r2). 
The time of maximum amplitude a t  any point is given by t = (4r2a,/gv)), where 
u,, is the mth root of the equation 

3xJ0(x) = (n + 2 )  J1(x). 

Therefore the points of maximum amplitude a t  a distance r move outwards with 
the corresponding velocities (37 gvr/32a,)+. This must be the group velocity for 
the predominant wavelength near the maximum; thus the value of this wave- 
length is A, = m/uc,. At times t = (4r2b,,,/gv)f, where b,n is the mth root of the 
equation J,(x) = 0, the amplitude becomes almost zero. The points of minimum 
amplitude at a distance r move outwards with the corresponding velocities 
(27gar/32bnL)f. The smaller r r ~  is, so also are a, and b,. Therefore, the outer ring 
spreads faster than the inner one. Again, when (gzit3/4r2) 9 1, the asymptotic 
expansion of Jl(gvt3/4r2) shows that the amplitude is almost of the order oft-(%+*). 
In  the two-dimensional analogue (38) of the above formula for y, the time of 
maximum amplitude at distance x for t & t, is given by 

t = (ix2e,/gv):, 

where em is the mth root of the equation 

tan x/x = 3/(n + 1). 

Equation (59) shows that at any instant, the waves die out like at large 
distances from the seat of the applied pressure. In  the two-dimensional problem, 
as equations ( 1 7 )  and (15) show, the corresponding law of decay is that of the 
inverse square in x. 

Uisplocernent ut the origin in u weightlessJluid 

I n  (71). let r = 0, f ( a , s )  = A ( S ) ~ ~ ~  (m = 0, 1,3 ,... ), 
and let the orders of the E- and s-integrations be inverted. Now 

After evaluating the limit of the k-integral of ( 7 1 )  as z 4 0 - , we find, a t  r = 0, 
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If h denotes the height of the centre of blast above the liquid, t ,  the time-interval 
between the blast and the first arrival of the shock at  the liquid surface, R,(t, + s )  
the radius of the shock-front in the gas a t  time t ,  + s after the blast, 

[ r , , ( ~ ) ] ~ ~ - l  = [{R,(t, + s)}2 - h21m-i 

= O(sm-it-) for small values of s. 

If, therefore, h(s) = o(s-jn-A) for small values of s, the vertical surface displace- 
ment a t  the origin (the point which is directly under the centre of the blast) 
remains bounded at  all times for arbitrary rates of shock propagation in the gas. 

I should like to thank Professor B. B. Sen most sincerely for his help and guid- 
ance during the writing of this paper. I am also deeply grateful to the referees 
for snggesting some improvements. 
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